skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Matsumoto, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Enhanced emission in the months to years preceding explosion has been detected for several core-collapse supernovae (SNe). Though the physical mechanisms driving the emission remain hotly debated, the light curves of detected events show long-lived (≥50 days), plateau-like behavior, suggesting hydrogen recombination may significantly contribute to the total energy budget. The Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) will provide a decade-long photometric baseline to search for this emission, both in binned pre-explosion observations after an SN is detected and in single-visit observations prior to the SN explosion. In anticipation of these searches, we simulate a range of eruptive precursor models to core-collapse SNe and forecast the discovery rates of these phenomena in LSST data. We find a detection rate of ∼40–130 yr−1for SN IIP/IIL precursors and ∼110 yr−1for SN IIn precursors in single-epoch photometry. Considering the first three years of observations with the effects of rolling and observing triplets included, this number grows to a total of 150–400 in binned photometry, with the highest number recovered when binning in 100 day bins for 2020tlf-like precursors and in 20 day bins for other recombination-driven models from the literature. We quantify the impact of using templates contaminated by residual light (from either long-lived or separate precursor emission) on these detection rates, and explore strategies for estimating baseline flux to mitigate these issues. Spectroscopic follow-up of the eruptions preceding core-collapse SNe and detected with LSST will offer important clues to the underlying drivers of terminal-stage mass loss in massive stars. 
    more » « less
    Free, publicly-accessible full text available December 30, 2025
  2. null (Ed.)
    ABSTRACT Neutron star mergers produce a substantial amount of fast-moving ejecta, expanding outwardly for years after the merger. The interaction of these ejecta with the surrounding medium may produce a weak isotropic radio remnant, detectable in relatively nearby events. We use late-time radio observations of short duration gamma-ray bursts (sGRBs) to constrain this model. Two samples of events were studied: four sGRBs that are possibly in the local (<200 Mpc) Universe were selected to constrain the remnant non-thermal emission from the sub-relativistic ejecta, whereas 17 sGRBs at cosmological distances were used to constrain the presence of a proto-magnetar central engine, possibly re-energizing the merger ejecta. We consider the case of GRB 170817A/GW170817 and find that in this case the early radio emission may be quenched by the jet blast-wave. In all cases, for ejecta mass range of $${M}_{\rm {ej}}\lesssim 10^{-2}\, (5\times 10^{-2})\, \mathrm{M}_\odot$$, we can rule out very energetic merger ejecta $${E}_{\rm {ej}}\gtrsim 5\times 10^{52}\, (10^{53})\, \rm erg$$, thus excluding the presence of a powerful magnetar as a merger remnant. 
    more » « less
  3. Samples of the carbonaceous asteroid Ryugu were brought to Earth by the Hayabusa2 spacecraft. We analyzed seventeen Ryugu samples measuring 1-8 mm. CO 2 -bearing water inclusions are present within a pyrrhotite crystal, indicating that Ryugu’s parent asteroid formed in the outer Solar System. The samples contain low abundances of materials that formed at high temperatures, such as chondrules and Ca, Al-rich inclusions. The samples are rich in phyllosilicates and carbonates, which formed by aqueous alteration reactions at low temperature, high pH, and water/rock ratios < 1 (by mass). Less altered fragments contain olivine, pyroxene, amorphous silicates, calcite, and phosphide. Numerical simulations, based on the mineralogical and physical properties of the samples, indicate Ryugu’s parent body formed ~ 2 million years after the beginning of Solar System formation. 
    more » « less